miércoles, 26 de noviembre de 2014

4.1.5.4 Reducción de Gauss y Gauss - Jordan

Reducción de Gauss


El método de Gauss consiste en transformar el sistema dado en otro equivalente. Para ello tomamos la matriz ampliada del sistema y mediante las operaciones elementales por filas la transformamos en una matriz triangular superior ( o inferior ). De esta forma obtenemos un sistema equivalente al inicial y que es muy facil de resolver.

Ejemplo


La matriz ampliada del sistema de ecuaciones:


\left\{
</p>
<pre> \begin{array}[c]{ccc}
   x \, + \, y \, + \, z & = & ~~3
   \\
   x \, + \, y \, - \, z & = & ~~1
   \\
   x \, - \, y \, - \, z & = & -1
 \end{array}
</pre>
<p>\right.

es:


\left(
</p>
<pre> \left.  
   \begin{array}[c]{ccc}
     ~~1 & ~~1 & ~~1
     \\
     ~~1 & ~~1 & -1
     \\
     ~~1 & -1 & -1
   \end{array}
 \right|
 \begin{array}[c]{c}
   ~~3
   \\
   ~~1
   \\
   -1
 \end{array}
</pre>
<p>\right)

Si a la tercera y segunda fila le restamos la primera, obtenemos:


\left(
</p>
<pre> \left.  
   \begin{array}[c]{ccc}
     ~~1 & ~~1 & ~~1
     \\
     ~~0 & ~~0 & -2
     \\
     ~~0 & -2 & -2
   \end{array}
 \right|
 \begin{array}[c]{c}
   ~~3
   \\
   -2
   \\
   -4
 \end{array}
</pre>
<p>\right)

Si ahora intercambiamos la segunda y tercera filas, obtenemos


\left(
</p>
<pre> \left.  
   \begin{array}[c]{ccc}
     ~~1 & ~~1 & ~~1
     \\
     ~~0 & -2 & -2
     \\
     ~~0 & ~~0 & -2
   \end{array}
 \right|
 \begin{array}[c]{c}
   ~~3
   \\
   -4
   \\
   -2
 \end{array}
</pre>
<p>\right)

que es la matriz ampliada del sistema de ecuaciones:


\left\{
</p>
<pre> \begin{array}[c]{rcl}
   x \, + \, y \, + \, z & = & ~~3
   \\
   -2y \, - \, 2z & = & -4
   \\
   -2z & = & -2
 \end{array}
</pre>
<p>\right.

que es equivalente al inicial.

Solucionamos la tercera ocuacion para obtener   
z
  :


z \, = \, 1

En la primera y segunda ecuación, sustituimos   
z
   por la solucion de la tercera ecuación   (   
1 \to z
   ), para obtener:


\left\{
</p>
<pre> \begin{array}[c]{rcl}
   x \, + \, y \, + \, 1 & = & ~~3
   \\
   -2y \, - \, 2 & = & -4
 \end{array}
</pre>
<p>\right.

La segunda ecuación es ahora una ecuación con una sola incognita,   
y
 , que resolvemos para obtener   
y \, = \, 1
 .   Sustituimos, en la primera ecuación,   
y
   por 1   (   
1 \to y
   ). Esto nos da una ecuación en   
x
  :


x \, + \, 1 \, + \, 1 \, = \, 3

que al resolverla termina de darnos la solución del sistema de ecuaciones inicial:



x \, = \, y \, = \, z \, = \, 1


Reducción de Gauss - Jordan





No hay comentarios:

Publicar un comentario